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EXECUTIVE SUMMARY 

In recent years, multiple-input multiple-output (MIMO) techniques have been considered 
for their potential benefits to radar applications [1], [2], [3], [4]. [5]. [6]. [7]. [8]. [9]. [10]. [11]. 
[12]. Conventional phased array radars form a single coherent transmit beam and measure the 
backscattered response over an array of receiver phase centers. We thus rail these classical 
systems single-input multiple-output (SIMO) systems. In a MIMO radar system, one allows for 
the possibility of multiple distinct waveforms being transmitted from each phase center. 

In the current literature, there are two basic approaches to MIMO radar. From one 
perspective, the additional MIMO degrees of freedom can be used to improve scattering diversity to 
combat target fading. This approach relies on broadly spacing the antennas to achieve independent 
scattering responses across the transmit-receive pairs. The second perspective aims to enhance the 
angular resolution of a scatterer by coherently combining the responses across transmit-receive 
pairs. In order to achieve coherence in this second approach, the transmit and receive antennas 
must be relatively close together. It is this second perspective, the coherent MIMO radar, that we 
focus on in this report. 

As we will see, the MIMO approach allows the use of arrays which are physically sparse, 
but which by separating the responses of each transmit/receive pair, extracts the same phase 
information that a filled array would obtain. In particular. MIMO systems can be designed witli 
large physically sparse arrays that do not suffer from the adverse effects of grating lobes [8]. 
For ground moving target indicator (GMTI) radars, there are two implications of the availability 
of larger arrays: improved angle estimation and minimum detectable velocity (MDV). While the 
potential for improvement has been shown through theoretical analysis [7], [8]. there is little analysis 
of airborne MIMO GMTI performance based on experimental data. To extend the understanding 
of MIMO radar beyond theoretical analysis, an airborne MIMO GMTI data collection experiment 
was carried out using a custom-built experimental MIMO testbed. Analysis of the experimental 
data is the principal focus of this report. 

The report is organized as follows. In Section 1, we give an overview of the theory behind 
MIMO radar. In Section 2. we highlight some issues concerning the choice of waveform sets for 
MIMO radar. This builds heavily on the previous work in [10] and especially [13] concerning 
the limitations on GMTI performance of realistic MIMO waveforms. In Section 4, we describe 
the recent airborne experiment that was conducted aimed at demonstrating the MIMO GMTI 
performance improvements using a small-scale experimental testbed. In Section 5. we describe the 
signal processing chain developed to process our experimental MIMO radar data. Most of the focus 
in this section is on adaptive calibration of our system. In Section 6, we analyze the performance of 
the experimental MIMO GMTI system and compare it to the performance of the testbed operated 
in a conventional GMTI mode. In Section 7, we discuss some issues regarding how to fairly compare 
the performance of MIMO and SIMO GMTI systems. In Section 8. we discuss some avenues for 
future research. Finally, we provide a summary and conclusions in Section 9. 

in 
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1.     INTRODUCTION 

Conventional phased-array radars form a single coherent transmit beam and measure the 
backscattered response over an array of receiver phase centers. We refer to conventional radars 
as single-input multiple-output (SIMO) radars. The idea behind a multiple-input multiple-output 
(MIMO) radar is that multiple independent waveforms are transmitted simultaneously from distinct 
phase centers. In this work, we focus on the case in which the transmitters and receivers are in 
close proximity so that coherent scattering can be observed across the transmit-receive pairs. By 
extracting the phase information contained in each transmit-receive path, a Ml MO system can 
synthesize a virtual array larger than the physical array and with more degrees of freedom. In 
particular as we will see. it is possible to use physically sparse arrays to produce long filled virtual 
arrays. 

Although MIMO can be considered for many types of radar systems, the focus of this report 
is the application of MIMO to airborne ground moving target indicator (GMTI) radar systems. 
In a GMTI system, a radar mounted on a moving airborne platform scans a region of the ground 
perpendicular to the aircraft's flight path with the goal of detecting moving targets. This is illus- 
trated in Figure 1(a). Because the radar is illuminating the ground as well as the targets, a GMTI 
system must suppress the ground clutter while maintaining SNR on the targets. This is done by 
using the fact that stationary scatterers. such as ground clutter, lie on a collection of ridges (lines) 
in the angle-Doppler domain (assuming a uniform linear array with no crab). Moving targets will 
be displaced from the clutter ridge. This is illustrated in Figure 1(b). This angle-Doppler coupling 
can be exploited by adaptively designing two dimensional filters in the spatial (array) and temporal 
(pulse) domains that null out the clutter. This type of processing is known as space-time adpative 
processing (STAP) [14]. 

Note that the slower a target moves, the closer it will be to the clutter ridge. Thus it is 
important that the notch which nulls out the clutter is narrow so as to avoid masking slow moving 
targets. The ability to detect slowly moving targets is one primary metric for evaluating GMTI 
performance. Frequently, one refers to the minimum detectable velocity (MDV) of a GMTI system. 
Although it is possible to make a precise definition of what this means (though not a unique 
definition), we will be intentially be vague1. We will never quote specific values for MDV and 
instead use the term to refer to the general capability of a GMTI system to detect slowly moving 
targets. The second primary metric for evaluating GMTI performance is the accuracy with which a 
detected target can be geolocated. Equivalently. this is the accuracy with which the angle of arrival 
of the back-scattered target signal can be estimated. 

Our reluctance to be precise is due to the fact that most definitions of MDV do not directly relate to the actual 
operational performance of systems. Although many authors try to reduce the MDV to a single number, we suggest 
that at the very least, the MDV should be viewed as a function of the target RC'S and range as one is certain to 
be able to detect a 10 dBsm target at 10 km at a lower velocity than a 0 dBsm target at 100 km. More generally, 
under a given set of operating conditions (aircraft crab, aircraft pitch, aircraft velocity, peak power, etc.), target 
parameters (RCS, range, etc.), detection criteria, and desired probability of detection p. there will be be some 
target radial velocity, below which a legitimate target will be detected with probability less than p because it. falls 
into the null the system is putting around the clutter. We suggest there should be an MDV function which maps 
these parameters to this threshold velocity MDV(Q), where 0 is a vector of these parameters. 
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(b) Ground clutter and target in angle-Doppler space. 

Figure 1. Illustration of the idea behind GMTI radar. 

In GMTI radar systems, the length of the array aperture has a strong effect on both the angle 
estimation accuracy and on the MDV. A longer array produces a narrower notch around the clutter 
thus lowering the MDV, and yields narrower beams for improved angle estimation performance. 

As we will see, MIMO techniques offer the possibility of longer effective apertures and thus 
improved GMTI performance. The idea of applying MIMO to GMTI has been studied in the 
literature by way of simulations and theoretical analysis in [9], [8], [7], and [11] as well as others. 
In particular the article [8] has a very thorough exposition of the theoretical performance for 
MIMO systems. However, at this time there is no analysis of MIMO GMTI performance based on 
experimental data. This report is intended to fill this gap. 

1.1     MIMO GMTI THEORY 

We will now develop a mathematical framework in which to analyze some aspects of MIMO 
radar. Let nx, UR denote the number of transmitters and receivers, respectively. Let p index the 
pulse number. Let Si(p,t) be the signal transmitted by transmitter i on the pth pulse where t 

parameterizes fast-time and t — 0 corresponds to the beginning of a pulse. Collect these into the 
vector of functions s(p, t) = [si(p, i),..., snT(p, t)]T. Similarly, the signals received at time t on the 
pth pulse will be collected into the vector of functions z(p, t) = [zi(p, t),..., zriR(p, t)]T. The vectors 



of functions z(p, t) and s(p, t) are related by 

z(p, t)=  f H(p, r) B(p, * - 2r/c) dr + n(p, /)• (1) 

where r is slant range, n(p, i) is the noise, and H(p, r) is an n/^ x nr matrix of functions called the 
channel matrix. Here and throughout the paper, when the integrand of an integral is a matrix or 
vector, the integral applies to each component. 

Let xm and yn be the coordinates of the transmitter and receiver phase centers. Then 

/ 
aT(u)= 

2Sl..y,, 27T1 
P x u yl p A u y"r 

a«(u) =   [e^uxi,...,e- 

are the transmit and receive steering vectors for a narrowband signal at wavelength A with u the 
unit vector pointing from the transmitters to the scatterer. The Doppler response for a stationary 
scatterer with unit direction vector u, due to the platform velocity vp, will be 

aD(u,p) =exp [{p- V 
XPRF 

where PRF is pulse-repetition frequency of the system. In the case of a single stationary point 
scatterer at range ro (with unit direction vector u). the channel matrix is given by 

H(p, r) oc 5(r - r0) a/?(u)ar(u)TaD(u, p), (2) 

where S(r) is the Dirac delta function. The components of the channel matrix H(p.r) have the 
form 

H(p,r)nmoc<5(r-r0)e
ix«(y«+^)a£)(u,p). (3) 

The phase differences between the components of the channel matrix shown in (3) are identical 
to the phase differences between the elements of the steering vector for a SI MO array with nr"/? 
receiver phase centers located at positions xm + y„. This is how the MIMO virtual array arises. 
The waveforms of a MIMO system are chosen so that in each receive channel, it is possible to 
disentangle the scattering response of each of the nr transmitted waveforms. The n / n n separated 
channels will have the phase information of the full channel matrix, or equivalently of the full 
MIMO virtual array. 

1.2     VIRTUAL ARRAY OPTIMIZATION 

The virtual array can be thought of as the convolution of the transmit and receive arrays. It 
is easy to see that if the same array is used for transmitting and receiving, there will inevitably be 
multiple virtual array elements at the same locations in space. To make this explicit, suppose one 
has a one-dimensional uniform linear array with three phase centers at { — 1.0, 1} (the coordinates 



Transmit Channels 
Receiver Channels 

Transmit 
Array 

Receive 
Array 

Figure 2. Notional sparse MIMO array on UAV. 

being with respect to the line on which the array lies in units of half wavelengths). If this array is 
used in a MIMO fashion, it will produce a virtual array with phase centers at each of the points 
{—2, 2}. two phase centers at each of the points { — 1,1} and three phase centers at 0. Note that the 
redundant phase centers can be interpreted as a triangular taper applied to the virtual aperture. 

This suggests that to maximize the virtual array length, while maintaing a dense spacing of 
virtual array elements, one should use separate arrays for transmit and receive, one sparse and the 
other dense. Doing so it is possible to produce a long filled virtual array whose length is slightly 
larger than the sparse array but with the same element spacing as the dense array. This is illustrated 
in Figures 2 and 3. In the context of our previous toy example, consider transmitting out of an array 
with phase centers at { — 1,0,1} and receiving using an array with phase centers at {—4,-1,2}. 
The resulting virtual array has one phase center at each of {—5, —4, -3, -2, —1,0,1,2,3}. While 
this examples uses the same number of phase centers as the previous toy example, the virtual array 
is made nearly twice as long by eliminating redundant phase centers2. 

Our view of the advantages of MIMO for GMTI is that MIMO allows the use of arrays that 
are long and physically sparse, but yield the performance of long filled virtual arrays. The benefits 
of a physically sparse array are the possibility of lighter arrays with few components, and flexibility 
to avoid airframe obstructions. Such arrays are good candidates for UAV GMTI systems. Sparse 
arrays with uniform element spacings are generally not usable if conventional processing is employed 
as they have severe grating lobe problems resulting in multiple blind speeds and ambiguous angle 
estimates. The MIMO approach allows the use of sparse physical arrays, by filling in the gaps with 
virtual array elements. 

Although MIMO does have the potential to offer great performance improvements, it is im- 
portant to ensure that one is making a fair comparison between a MIMO and SIMO system. 
Comparisons between MIMO and SIMO systems can be made by holding the energy and area rate 

Note that in many cases redundant phase centers may be desired for better fault tolerance. This could be acco- 
modated by allowing either (or both) of the sparse and dense arrays to transmit and receive. One can also use 
geometries that are intermediate between sparse and dense arrays (for example, multiple widely separated dense 
arrays). However, as we will see in Section 2, the few sets of waveforms which we expect will have good GMTI 
performance do not easily lend themselves to supporting large numbers of transmitters. Thus one may have to 
make a trade between maximal virtual array length and redundancy. 
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Figure 3. The virtual array is the convolution of the transmit anil receive arrays. 

(AR) of the systems constant as follows. Let Pavg be the average transmit power of a radar system. 
GT be the transmit gain for a fully coherent transmit beam, and T be the coherent processing 
interval. Then for a SIMO system, the signal-to-noise ratio (SNR) and area rate have the follow- 
ing relationships (the omitted proportionality constants are the same for the MIMO and SIMO 
systems) 

SNRsmo    oc    PavgGrT (4) 

ARSIMO   c<    -pr^- (5) 

Next, consider a MIMO configuration of the same system where the phased array is partitioned into 
r?j- subapertures. Maintaining the same total average transmit power for this system, the power 
can be distributed across the TIT subapertures resulting in an average module power of Pavg/n-T- 
The transmit subapertures have lower gain than the full aperture, so the MIMO transmit gain is 
Gr/nT~ a factor of n^ smaller than the SIMO case. However, the MIMO transmit beam covers an 
area nr times broader than the SIMO transmit beam. Therefore, to match the SNR and area rate 
of the SIMO system, the MIMO integration time can be increased to n i T 

SNRMIMO = SNRSIMO   OC   nT-^-^nTT (6) 
riT  n-T 

ARMIMO — ARSIMO   OC    jp,—-.—r-.—=r". (7) 
{GT/nT){nTl) 

Note that since the SIMO system transmits narrow beams, it needs to scan over n / angles to cover 
the same area that the MIMO system covers with a single transmit beam. 

It is important to note that the assumption that the MIMO system can maintain SNR by 
integrating longer is not always valid. In certain situations it may be impossible to maintain target 
coherence for the full integration time the MIMO system would need to have equal SNR to some 
comparable SIMO system. This is likely to be more of an issue with faster t ai get s. 11< wever. for our 



primary interest in the use of MIMO GMTI in the detection of slowly moving targets, this should 
not be as much of an issue. 

Another consideration when comparing the two systems is the array configuration. As we have 
mentioned, to achieve the longest virtual array, the MIMO receive array (or the MIMO transmit 
array) should be sparse, whereas a typical SIMO array uses densely packed elements to avoid grating 
lobes. However, if desired, one could construct a densely packed MIMO array or a sparse SIMO 
array. Although our primary consideration will be sparse MIMO configurations and dense SIMO 
configurations, in Section 7 we consider both dense and sparse configurations for the MIMO and 
SIMO systems. 

1.3    CHANNEL ESTIMATION 

Disentangling the transmitted waveforms in each receiver is equivalent to estimating the full 
channel matrix H(p, r) of (1). One approach is to match filter each receiver output with each 
transmitted waveform. The result of this match filtering operation is an estimate of the channel 
matrix3, denoted H(p,r), 

H(p, r) =  / z(p. t) s(p, t - 2r/c)H dt 

= H(p, u) s(p, t - 2u/c) s(p, t - 2r/c)H du dt + n(p, r) 

= j H(p, u) C(p, 2(ti - r)/c) du + n(p, r), (8) 

where 

c (P,t)=    fS(p,T)s(p,T + t)HdT 

is the waveform cross-correlation. n(p, r) denotes the noise after applying the matched filter, and 
superscript H denotes the conjugate transpose. 

Let /„ = 27r^r. n = 0,...,Np — 1, where Np is the number of pulses per CPI. Let H(/n,r), 
C(fn,r) be the DFT of H and C in the pulse variable. It will be useful to observe that the DFT 
of (8) in the pulse variable is 

t Np 

H(/n»»0 =  /  J2 H(/m,«)£(/n-m,2(tl - r)/c)du, (9) 

where by abuse of notation we let /n_m = f^ _(n_m) for n — m < 0. and where we have omitted 
the noise term. Observe that if there is a single point scatterer with Doppler frequency /„0 at range 

Whether or not this is a good estimate depends on the waveforms used, in particular on C(p, t). 

6 



ro, then H(/„,r) = 6fn (/„) S(r — ro) A where A = a/?(u)ar(u)T and Sfn is a discrete point mass 
at the frequency fnQ. 

To accurately recover A, we desire that C(/n,r) is as close as possible to <M/„.) 6(r) I. This is 
of course impossible to satisfy exactly, however, one might hope that il would be possible to have 

C(/„,r) = <*o(/nWr)I 

for some scalar auto-correlation function a{r). This too is impossible unless the waveforms vanish 
identically. To see this, first note that if the cross-correlation completely localizes in Doppler. then 
the transmitted waveforms do not vary from pulse to pulse. Next, if a pair of waveforms has zero 
cross-correlation at all delays, then for all /, 

0 = jSi(T)sj(T + tydT = Jsi(f)si(fye-•ftdf, (10) 

here the Fourier transform indicated by the underline is in fast time and we have omitted the 
pulse index to work in a single pulse; the * indicates conjugation. Equation (10) implies Sj(/) and 
•ij(f) have disjoint supports. On the other hand the requirement to have identical auto-correlation 
functions implies |SJ(/)|

2
 and \s_j(f)\2 are identical. This can only be satisfied if the waveforms 

vanish. 

This implies that the waveforms have nonzero cross-correlation and/or they have mismatched 
auto-correlation functions. In the next section we will discuss the impact of the waveform cross- 
correlation and auto-correlation on MIMO GMTI performance. 
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2.     WAVEFORM CONSIDERATIONS 

As we mentioned in the introduction, a GMTI system employing STAP suppresses clutter by 
adaptively constructing filters in the spatial (array) and temporal (pulse) domains to null the clutter 
without suppressing the targets. For STAP, the rank of the clutter covariance matrix corresponds 
to the number of degrees of freedom needed to cancel the clutter. As we will see. without careful 
choice of waveforms for MIMO systems, there will be an inevitable increase in the rank of the clutter 
covariance. and thus a decrease in overall performance. A very elegant and thorough analysis of 
this phenomenon is contained in [13]. In this chapter, we will give a concise summary employing a 
similar analysis. 

Before starting the analysis, let us give a heuristic explanation for this increase in rank. Recall 
from Section 1.3 that an ideal MIMO waveform would have an autocorrelation function satisfying 

C(/n)r) = <S0(/nMr)I, 

which we noted was impossible. If one considers the integral in (8). our sees thai inevitable differ- 
ences between the entries of C(p, r) will cause the clutter to be smeared out differently in different 
channels. This causes the clutter to decorrelate and is the source of the increased rank. With care 
it can be avoided in certain situations. 

2.1     CLUTTER COVARIANCE MATRIX RANK 

Most discussions about clutter rank, in particular the well known Brennan rule, are with 
respect to the full MNP x MNP space-time covariance matrix where Np is the number of pulses and 
M the number of spatial degrees of freedom. We will instead focus on the spatial array covariance 
in a single Doppler bin which is only an M x A/ matrix. In the MIMO case M = npnT and in the 
SIMO case M = TIR. Note that for a SIMO array for which all the clutter at a given Doppler is at 
the same angle, the spatial covariance matrix of the samples in that Doppler bin should effectively 
be rank 1, with the dominant eigenvector being the steering vector. It would be desirable to have 
the same outcome with the MIMO array, requiring only one degree of freedom to cancel the clutter. 

Let us now consider a MIMO array. For simplicity, let us assume our transmit and receive 
arrays are uniform linear arrays, with dr- CLR the transmit and receive element spacings. Then 

afl(0) = [i)e¥
rffl8inW,...,e¥"fid«sinW]T 

aT(0) = [i)e
2fdrsinW,...)e¥"rdTsm(e)]T 

are the transmit and receive steering vectors for a scatterer at angle 0 (where this angle is the 
off-broadside angle or equivalently the complement of the cone angle). Clutter at angle 9 will have 
a normalized Doppler of 27rosin(#), where a = XpfcF• and vp is the platform speed. Thus 

aD(0,p) = exp (2iri(p-l)ann(0)),        p=l,...,Np (11) 

is the Doppler response for a scatterer at angle 9. 

!) 



We model ground clutter as the result of scattering off a dense collection of point scatterers. 
As in (2) (but now written with respect to angle), the channel matrix for a single point scatterer 
at angle 6 and range u is 

H,,u(p,r) = 8{r - ii)ge(xi)aR{e)aT{0)TaD{0.p), 

where ge(u) is the complex scattering coefficient. Then since we assume a dense collections of 
scatterers we can obtain the channel matrix by integrating in range and angle. 

H(p,r) =  f f •0$,u(j>,r)dvd9 = I' ge{r)aR(e)aT(e)TaD{d,p)d6. 

Let he(ri) be the amplitude at frequency /„ of ap(6,p) obtained from the DFT in the pulse variable. 
The function hg(n) can be written explicitly as 

h0{n) = exp (-m(Np - 1) (•£- - asin(0)j)D(e,Np,n), 

for 

D{0,Np,n)=   M*(n-NpaMe))) (12) 

sin^Tr^-Qsin^JJ 

Thus 

S(/n,r) =   fg0(r)he(n)aR(e)eiT(O)Tde. (13) 

Note that for -^ asin(#) close to 0. we can apply the linear approximation sin(x) w x to 
the denominator of (12) to obtain the approximation 

D{9, Np,n) » iVpsinc (NP (— - asin(0))) . 

Then since lima_>o ^ sinc(x/a) —> S(x), we see that for large Np it is reasonable to approximate the 
integral in (13) by 

H(/„,r) a gn(r)BLR(0n)BLT(en)T, (14) 

where 8n is the angle corresponding to Doppler frequency /„ = 2TTJJ-, and gn(r) = <70n(r). For 
simplicity, we assume that the element spacings and platform velocity are such that for each Doppler 
frequency fn. there is a unique angle 6n at which clutter has this Doppler frequency. 

Let vec denote the operator which stacks the columns of a matrix as a vector. Note that 

vn(r) = vec(U(fn,r)) 
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is our estimate of the virtual array response to scatterers along the clutter ray corresponding to 
Doppler frequency /„. Substituting (14) into (9) and ignoring the noise term, one can write 

Np r 
v„(r) =Y. I 9m(u) (an(0m) <8> I„T) C(/n_m,2(u - r)/^1 aT{0w) du. 

m = l '' 

The virtual array covariance matrix is E[vn(r)vn(r) ], where the expectation is over clutter real- 
izations. Let us assume that E[gi(r)gm(s)*] = pi{r)5im8{r — ,s), where 5im is the Kronecker delta. 
Here, pi are functions that encode the reflected clutter power, and we are assuming the clutter is 
uncorrelated in adjacent Doppler bins. Then one can compute that 

Np 

£[v„(r)vn(r)"] = ^(afi(^)®InT)Gjn(r-)^)(aR(^)®InT)i? (15) 

where 

GinirJi) = |/>/(«)Cr(/n_,,2(a-r)/c)aT(^)a^(^)Ct(/„.,.2(u - r)/c)du, (16) 

and where the * indicates conjugation (but not conjugate transpose). We call G;„ the integrated 
waveform cross-correlation matrix. Note that G/„ is a matrix for each choice of indices l,n. From 
this equation, one can see that the structure of C(/;. t) will directly influence the rank of the clutter 
covariance matrix. 

Suppose that the sum in (15) has a single nonzero term (say corresponding to / = n) so that 

E[v«(r)vn(r)H] = (aR(en) ® InT)Gnn(r,en){aR(en) ® lnT)H• (17) 

Observe that the columns of -y==(a.ft(6n) <g) I„r) are orthonormal. If 

Gnn(r,en) = F(r,en)\(rten)F(r,en)H 

is an eigendecomposition of Gnn(r, 0n) (here F(r, 6„) is orthonormal and Air.O,,) is diagonal), then 
(17) can be written 

E(9n)(nHA(rJn))E(0n)H. 

where 

1 
E(0„)=     (afl(0„)<8>InT)F(r,0„) 

In particular. (17) has IIRUT — nr eigenvalues of 0. and nj- eigenvalues n^ times larger than those 
of Gnn(r,8n). In this case, note that if C(/o, t) = c(<)B for some constant matrix B and some 
scalar function a(t). then 

Gnn(rA) = (Jpn{u) |CT(2(U - r)/c)\2du\ BTaT(dn)a$(en)B*. (18) 
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Since a7'(#r!)a^(#n) is rank-1, (18) is as well and thus so is the clutter covariance. 

On the other hand, consider a waveform set in which the waveforms s(t) are orthogonal at all 
delays and the same waveforms are repeated from pulse to pulse. In this case, we again only need 
to consider Gnn. Note that 

Q(fo,t)v<x f Si{r)ei{T +if dr = J*{/)%(/)*, 

which is 0 for i ^ j. Assume that the clutter power pi(u) = 1 for simplicity. Then by Parseval's 
theorem 

Gnn(r, 6n) = J CT(/0, 2(u - r)/c) aT(0n) a$(0n) C*(/o,2(ti - r)/c) du 

= |£(X \^T{9n)j\%{f)tdA e,ef, 

where e, is the vector with a one in the j component and zeros elsewhere, and Qj is the support 
of Sj(/). Consequently. Gnn and thus the clutter covariance will be rank nr for waveforms that- 
achieve orthogonality in fast time. 

Essentially, for fast-time MIMO waveforms, although our MIMO processing has given us nr 
times more degrees of freedom, we have to expend all of them to suppress the clutter which now 
occupies a subspace nj- times larger. Thus, we will not gain any improvement in performance. The 
increased clutter rank, it turns out, depends crucially on the assumption that clutter fills range 
and Doppler (i.e., that pi(u) was nonzero for all I and u > 0). If the clutter is limited in range or 
Doppler. it is possible to choose orthogonal waveforms so that the clutter covariance has rank one. 
In the next section, we describe two classes of waveforms that achieve rank one clutter covariance 
under certain restrictions. 
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LOW CLUTTER RANK MIMO WAVEFORMS 

First, consider time division multiple access (TDMA) waveforms. These waveforms are intu- 
itively very simple, we only let one transmitter transmit at a time as illustrated in Figure 4. As we 
previously noted, the clutter covariance matrix will have rank 1 if the sum in (15) has the single 
term, say for / = n. and C(fo,2(u — r)/c) — a(2(u — r)/c) B for a scalar function a and constant 
matrix B. Suppose Vi. gt{r) = 0 for r > R so that clutter has finite extent in range. Then the 
integral in (16) will only extend from 0 to R. Choose a fixed waveform s(t) and have transmitter 
m transmit a copy of this waveform delayed by 2(m — \)R/c + r, m = 1,..., fix where r is the 
pulse width. It is easy to see that for 0 < r < 2R/c. C(p, t) = (?(t)I, where o is the autocorrelation 
function of s. For /, > 2R/c this relationship breaks down, but since the integral in (16) does not 
extend past 2R/c. the clutter covariance will have rank 1. 

Next, consider Doppler division multiple access (DDMA) waveforms. These have been pro- 
posed as candidate MIMO waveforms in [12]. and their potential for maintaining low clutter rank is 
discussed in [9]. These waveforms achieve orthogonality using slow time. The idea is that each trans- 
mitter emits a Doppler modulated pulse train in such a way that the responses to each transmitter 
are separated in Doppler. This is illustrated in Figure 5. Let us assume that the clutter occupies a 
finite extent in Doppler so that gi(r) = 0 for ft outside of the band [T^-, $-]• Again, choose a fixed 
waveform. s(t). The collection of MIMO waveforms are defined by having each transmitter emit 
Doppler-shifted copies of s, meaning, on the p    pulse, transmitter m will transmit eip•"'   ll,;.s(£), 
in 1 ,nr for t/J = &-. In this case, one finds that C_(/,, f) = S0(fl) rr(t.) I -I- D(/,). where c is 

1%T 

the autocorrelation function of s and D(/j) are Doppler ambiguous terms which are nonzero only 
for fj outside the band l—1, ^]. Thus for /„ € [^, ^2-], the sum in (15) again reduces to simply 

Temporal Separation (TDMA) 

|TX#1 nun 
0 

Figure 4- Illustration of TDMA waveforms. 

-fr 0 /, 
Doppler 

Figure 5. Illustration of radar response from DDMA waveforms. 
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a single term, and it can be seen that the clutter covariance matrix has rank 1. Also, from the form 
of C(/n,t), even though the waveforms are multiples of each other on each pulse, because of the 
Doppler modulation, we can easily extract the channel. 

3.1    WAVEFORM CONSTRAINTS 

The number of realizable DDMA or TDMA transmit channels is constrained by the pulse 
repetition frequency (PRF) of the system as well as the clutter bandwidth. DDMA and TDMA 
waveforms are well-suited to systems that operate at short to mid-range since these systems can 
tolerate relatively high PRFs without range ambiguities. 

Although the assumptions that clutter is limited in range or Doppler used in our analysis of 
DDMA and TDMA waveforms will never be realized exactly in real life, they should hold approx- 
imately in many cases. In particular, for a good antenna pattern with low sidelobes, clutter will 
effectively have a finite extent in Doppler. Similarly, the i?~4 fall off in power as a function of range 
means that clutter will also effectively be limited in range. 

Of course large discretes in sidelobes or at long ranges can still create problems. In actual 
practice, because of noise and other effects, the covariance matrix will always be full rank. Instead, 
one is interested in what extent different waveforms may increase the number of eigenvalues that 
are above the noise floor. 

We will now present some examples of simulated and experimental data illustrating this 
increase in clutter covariance rank and the fact that the DDMA waveforms do not suffer from this 
increase in rank. 

3.2     SIMULATED CLUTTER DATA 

To investigate the MIMO clutter covariance matrices for different waveforms, a simulation 
was developed that used a sandpaper earth approximation for ground clutter and that included 
a variety of realistic effects. In this paper, we compare two waveforms. First, for a simple (naive) 
example of a set of nearly orthogonal waveforms, we will consider a set of waveforms of constant, 
modulus where for each fast-time sample the phase is drawn from a uniform distribution. We can 
ensure that the n-r waveforms are orthogonal (at 0 delay) by taking the SVD of the initial set of 
random samples. Though random in fast time, the same waveforms will be repeated in slow time. 
We will compare the clutter eigenvalue distribution of this random waveform and of the DDMA 
waveforms described earlier. For the simulation, we use I%T = 4 transmitters. 

In Figure 6, we show the eigenvalues in a single Doppler bin for the random and DDMA 
waveforms in the case in which there are four transmitters and four receivers. As expected, for the 
random waveform at least four eigenvalues are well above the noise floor. A variety of other possible 
waveforms also display this increased clutter covariance matrix rank. Observe that for the DDMA 
waveform the matrix has a single dominant eigenvector. 
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Figure 6. Peak normalized eigenvalues of spatial array covariance. matrix in one Doppler bin for simulated 
data using random and DDMA waveforms. 

6 8 10 12 14 16 
Eigenvalue Number 

Figure 7. Peak normalized experimental eigenvalues of the spatial array covariance matrix in ont   Doppler 
bin for DDMA waveforms. 

3.3     EXPERIMENTAL CLUTTER DATA 

In Figure 7. we present the eigenvalues in a single Doppler bin for the experimental data 
(which is the subject of the rest of this report) that uses the DDMA waveforms. The system 
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parameters are presented in Section 4. Observe that the shape of the experimental DDMA clutter 
eigenvalue distribution agrees well with the simulated eigenvalues and. in particular, also has a 
single dominant eigenvector. 

3.4    FINAL THOUGHTS ON WAVEFORMS 

As we have tried to illustrate, although in principle a MIMO system has much freedom regard- 
ing the multiple transmitted waveforms, for GMTI applications, there are substantial constraints 
imposed by the requirement to maintain low clutter rank. Any application of MIMO to GMTI must 
ensure that the waveforms will not degrade performance unnecessarily. At the current time, we rec- 
ommend the use of DDMA or TDMA waveforms for MIMO GMTI. They are simple to process and 
have good properties for GMTI as we have indicated. Their primary disadvantage is the required 
high PRF. 
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4.    AIRBORNE EXPERIMENT 

A Twin Otter aircraft was selected as the platform for a small-scale MIMO radar experiment. 
The MIMO radar testbed operates at S-band with up to 6 independent transmit channels and 8 
independent receive channels. The operator can manually activate or deactivate cadi channel to 
configure the number and relative placement of transmitters and receivers in the MIMO array. 
Table 1 summarizes some of the important testbed parameters, and a photograph of the testbed is 
shown in Figure 8. The frequency and bandwidth of the system were chosen due to availability of 
existing hardware and low-cost commercial components. GMTI data was collected on instrumented 
targets with both sparse and dense SIMO and MIMO configurations during a two-day experiment 
at Ft Devens. Massachusetts. Ground activity for the experiment included instrumented civilian 
vehicles with a diversity of ground speeds and aspect angles. 

The MIMO array was mounted on the port side of the Twin Otter with a 30 degree depression 
angle. It is composed of two rows of 13 commercial patch antennas as shown in Figure 9. where the 
patches have a 30 degree beamwidth and are uniformly spaced horizontally with an interelement 

Figure 8. MIMO flat panel array mounted on the side of the Twin Otter aircraft. 

TABLE 1 
Experimental Radar System Parameters 

Center Frequency 2.37 GHz 
Bandwidth 10 MHz 
Pulse Width 12 /isec 
PRF 6667 Hz 
Peak Element11 Power 25 W 
Element Gain 13 dBi 
Element Beamwidth 30 deg 
Altitude 3 km 
Air Speed 70 m/s 
Range to Aimpoint 5 km 

" An element is a single patch antenna on the array. 
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Figure 9. MIMO testbed array with a grid of 13 patch antennas across and 2 down in test chamber. 

Dense Array Configuration Sparse Array Configuration 

Transmit Elements      Receive Elements     Virtual Array 

Figure 10. MIMO testbed array with subarrays for different modes highlighted. 

spacing of 19 cm. To configure the MIMO array, up to 6 patches on the upper row are manually 
connected to independent transmit channels and up to 8 patches on the lower row are manually 
connected to the available receive channels. For the results presented here, we focus on the case of 
TIT = 4 transmit modules and n# = 4 receive modules, where the receive array spacing has been 
evaluated in both densely packed and sparse configurations. The nominal dense SIMO and sparse 
MIMO array configurations are shown in Figure 10. The results presented in Section 6 are based 
on these nominal configurations. Section 7 further explores array configurations by examining a 
SIMO system with the sparse receive array shown in Figure 10 and a MIMO system with the dense 
receive array of Figure 10 (these configurations have virtual arrays different from what is pictured). 
The effective apertures for these four cases are given in Table 2. 
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TABLE 2 
Effective Aperture Lengths for SIMO and MIMO Configurations 

Array Configuration Effective Aperture (in) 

Dense SIMO 0.76 
Dense MIMO 1.33 
Sparse SIMO 2.47 
Sparse MIMO 3.04 

The test bed design allows arbitrary waveforms to be independently programmed for each 
transmit channel. In this experiment, we collected data using the Doppler-division multiple access 
(DDMA) waveforms and the Time-division multiple access (TDMA) waveforms described in Section 
3. Both of these waveforms are based on a standard linear FM chirp to achieve low range and Doppler 
sidelobes. Recall that the DDMA waveform set is constructed by applying slow time phase ramps 
to the LFM pulse train, thus modulating the chirp to different regions of the Doppler spate so that 
the clutter responses of the transmitters do not overlap. The TDMA waveforms simply amount to 
having one transmitter transmitting at a time. We also collected data for a slow time phase coded 
waveform set, where each transmitter transmits an LFM pulse but with randomly varying phase 
from pulse to pulse. These random phase waveforms require a somewhat more involved processing 
chain than the DDMA/TDMA waveforms which we will describe in a separate report. 

For comparison purposes, conventional SIMO operation of the test bed is also considered. In 
fact, depending on the processing techniques applied to the data, the DDMA MIMO collection 
can also be interpreted as a SIMO collection with four scan angles interleaved on a pulse-to-pulse 
basis. The reason for this is that the DDMA waveforms were implemented by applying phase ramps 
across the transmit array that effectively sweep a coherent transmit beam through four angles from 
pulse to pulse. That is, during ptdses 1, 5, 9,.... a beam is formed in the direction of angle 1: during 
pulses 2,6,10,..., a beam is formed in the direction of angle 2; and so forth. The beampatterns 
formed by the DDMA waveforms on pulses 1,2,3, and 4 are plotted in Figure 11. Thus by taking 
every ntp pulse and processing this subset of pulses as a coherent processing interval (CPI), we 
treat the data as a SIMO collection with a pulse repetition interval (PRI) that is TIT times longer 
than the system PRI. This approach meets the equal energy and area rate requirement laid out in 
Section 1, but the balance in SNR for SIMO and MIMO is achieved by making trades at the PRI 
level rather than the CPI level. For this experiment, a MIMO CPI consists of 720 pulses with a 
150 //sec PRI for a total length of 101 msec. The data viewed as SIMO system is composed of four 
180-pulse CPIs (interleaved on a pulse by pulse basis), with each CPI also of length 101 msec, but 
the effective PRI is 600 /tsec. Note that these SIMO and MIMO setups operate on the same data. 
but are simply processed in different fashions. 

We also collected data where the array was operated in a more traditional SIMO mode, in 
which four CPIs of 180 pulses each scan through four look angles sequentially. The PRI is 150 //sec. 
and since the CPIs are not interleaved as they are in the DDMA data, the PRI is actually 150 
//sec. Thus for this conventional data, the Doppler resolution is \/4th of that of the DDMA data 
treated as MIMO or SIMO. To distinguish between the two types of SIMO data, we will refer to 
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Figure 11. The beam patterns formed on successive pulses by the slow time phase ramp of the DDMA 
waveforms. 

the DDMA data processed in a SIMO fashion as DDMA SIMO data, and refer to the traditional 
lower resolution SIMO data as the conventional SIMO data. This conventional SIMO data was 
interleaved with the MIMO data, so is collected essentially simultaneously, as each DDMA dwell is 
followed 101 msec later by four conventional SIMO CPIs of the form just described. 
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5.    SIGNAL PROCESSING 

Let us now describe the processing chain used for the experimental MIMO radar data. A 
block diagram of the processing chain is show in Figure 12. 

Data 
Matched 

Filter —• 

 • 

FFT 

> 
Virtual Array 
Extraction 

 • 
Adaptive 

Equalization/ 
Calibration 

> 
STAP 

» 

—» 
 1 

Detection/ 
Estimation 

 »  » 

Figure 12. Signal processing chain block diagram. 

The first step is to match filter the raw I/Q data from each receiver with the transmitted 
waveforms, yielding TITTIR. range-pulse images. We move to the range-Doppler domain using a win- 
dowed FFT. The windowing suppresses Doppler sidelobes to reduce interference between adjacent 
DDMA channels. An example range-Doppler map following the matched filter and FFT is shown in 
Figure 13. Because we are using DDMA waveforms, there are effectively four range-Doppler maps 
appearing in this image. The virtual array output for the transmit/receive pair under considera- 
tion is the center "stripe" of this range-Doppler map corresponding to frequencies in the interval 
[—fri—, -5^—]• Thus for each of the TITTIR range-Doppler images we extract a single sub-chip, corre- 
sponding to this Doppler interval. An inverse FFT yields UTUR range-(pseudo) pulse images, which 
are the outputs of our virtual array. Note that before extracting the virtual array subchip, the 
MIMO system had 720 pulses per CPI with a 150/isec PRI. After extracting the virtual array, the 
range-(pseudo) pulse images have only 180 pulses per CPI. but the effective PRI is 600//sec just 
like the DDMA SIMO data. 
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Figure 13. DDMA MIMO data after a matched filter and Doppler processing. 
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5.1     MIMO CHANNEL EQUALIZATION 

We will now describe the calibration procedure. Unfortunately, there was no end-to-end system 
characterization done prior to the data collection due to time constraints. Additionally, there were 
no ground targets that were visible pre-STAP with known location that could be used for calibration 
(we had corner reflectors on the ground but they did not appear in the data). Consequently, we 
were forced to develop a data adaptive calibration approach. 

Let us first outline our equalization approach. Consider a uniform linear array and suppose 
the platform velocity is such that from pulse to pulse each array element moves to the position its 
neighbor was at on the previous pulse. Then, if we shift the data from different array elements in 
the pulse domain by integer amounts in the correct fashion (ignoring the edges), after shifting, the 
data from each array element will have been recorded at the same physical location in space (but at 
different times). Thus any stationary target perceived by the array should produce identical outputs 
for all elements. This idea is used in the DPCA clutter cancellation technique. We can instead use 
it to calibrate the array by designing filters that make the response of the shifted array elements to 
a stationary target as similar as possible. In practice the array will not move by an integer element 
shift from pulse to pulse, but we can still use this idea, it will simply require shifting by a fractional 
number of pulses. The stationary target we will use is the ground clutter. Now let us examine the 
details more explicitly. 

Consider a uniform linear array under ideal conditions with no crab. Assume the aircraft 
velocity is v, the wavelength is A, the interelement spacing is d, and the PRI length is Tpm. First, 
we need to shift our data in the pulse domain so that the clutter in all the virtual array elements is 
aligned coherently. Shifting the data from the nth virtual array channel by 2t)^ Pulses W'H have 
the desired effect of making the clutter signal in each virtual array channel identical. This shift 
factor can be derived through a displaced-phase-center antenna (DPCA) type analysis. 

More precisely, consider a clutter patch at an azimuthal angle of 9C and elevation angle of 4>c 

appearing at a Doppler frequency of /c. For a uniform linear array, define the normalized spatial 
frequency 

•&c = - cos(6>c) sin(^)c) 

where d is the interelement spacing and A is the wavelength. Note that for our MIMO system d, is 
the spacing between elements of our virtual array. Also define the normalized Doppler frequency 

"c = fcTpRI 

where Tpm is the length of the (effective) PRI. The space-time steering vector of this clutter patch 
will be 

     2-niu]cm   2tTi-dcn 
*nrn — e e i 

where m indexes the pulses and n indexes the array elements (and our indices start from 0). 
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Recall the relationship [11] 

<*-(^)*c (19) 

for a uniform linear array with no crab. We shift the data in the pulse domain by ^vT^    PU
'
S(>

'
S
- 

This will transform the steering vector to 

vnm = e2m^me27Il"(*c~^>^) = e2*'^"' 

where the equality follows from (19). Thus in every Doppler bin. the clutter array response after 
doing this shifting is proportional to [1,..., l]T. 

In general the required shift will be fractional. To implement it. we first apply a Taylor window 
that is translated the same amount we need to shift our signal, but in the opposite direction. After 
performing the shift, this window will be centered and will suppress some of the edge artifacts. The 
actual shift is implemented by taking an FFT. applying a phase ramp and applying an IFFT. 

Ideally, after we perform this shifting, the clutter response in all of the virtual array elements 
would be identical. In practice, however, some mismatch still occurs due to hardware imprecisions. 
non-ideal aircraft motion, etc. We address the calibration and equalization of the system using a 
series of adaptive filters to match all of the virtual array channels to a reference channel. For a 
well-calibrated system, the filters would exhibit a thumbtack-like response with a magnitude of 1 
in all channels, indicating the channels are well matched. 

First, we create an adaptive FIR filter in the pulse domain. More precisely we choose a 
reference virtual array channel (empirically we found that transmit channel 3 in receiver 3 was the 
best), and use a Wiener-Hopf filter to match all the other channels to this reference channel. We use 
the data for all range bins to estimate the sample auto- and cross correlation (in the pulse domain). 
This is used to compute a filter that makes the data in each channel as similar as possible to the 
reference channel in a mean squared sense. This filter is applied in the pulse domain for each range 
bin. This filter can be viewed as a crude motion compensation that corrects lor uncertainties in 
the velocity and exact phase center locations. The filter coefficient magnitudes are shown in Figure 
14, where the plots in each row show the filter coefficient magnitudes for all the transmitters in a 
given receiver channel. Note that all the channels in receiver 1 (the first row), have been "turned 
down" by the filter. This receiver in general seems to be a persistent source of problems, which 
may be due to multipath resulting from its proximity to the aircraft wheels and wings (it was the 
foremost antenna, see Figure 8). Note that the absent plot in the (3, 3) position is the reference 
channel which is not filtered. 

Next, we filter in the range domain to correct for phase errors in the transmit ters and receivers. 
We first do a separate filter for each pulse, matching the range samples of each virtual array channel 
on each pulse to those of the reference channel. The filter coefficients are estimated separately for 
each pulse using only the samples from that pulse. The filter coefficients on one pulse are shown 
in 15(a). The single pulse range filters have broad peaks that are sometimes shifted from zero 
indicating that the receiver channels have slightly different delay paths and are correlated over 
multiple samples. The apparent correlation over multiple (roughly 2) samples is consistent with 
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the fact that the baseband signal which had a bandwidth of 10 MHz is sampled at 20 MHz. After 
applying this filter, we do another filter in range, here the same filter is applied to every pulse, but 
this is estimated using the samples from all pulses. The coefficients are shown in 15(b). These two 
filters seem redundant, but seem to perform slightly better than either alone. 

The third filter is a two dimensional filter applied in range-Doppler space. Our interpretation 
of it is that it is basically matching the antenna patterns of all the virtual array elements. The 
two dimensional filter coefficients are plotted in Figure 16. Again, possibly as a result of multipath 
effects, receiver 1 requires significant adjustments to match the reference channel. 

Lastly, we perform an FFT in fast time and apply a filter in the frequency domain. The 
filter coefficient magnitudes are show in Figure 17. This filter corrects for some sort of fast-time 
modulation which is occurring in some channels; in particular in receivers 1 and 2 (corresponding 
to rows 1 and 2). possibly due multipath off the wheels or wing. 

The TDMA data is processed similarly. In the TDMA case, there are 720 pulses at the 6667 
Hz PRF, but only one transmitter is transmitting on any given pulse. The virtual array extraction 
is accomplished by grouping the 720 pulses into 180 sets of 4 pulses. Then the receiver outputs for 
each set of 4 pulses are concatenated to yield the virtual array. The TDMA data is equalized in the 
same fashion as the DDMA data. The filter coefficient magnitudes for the pulse domain filter of the 
TDMA data is show in Figure 18. Note that in particular for transmitter 1 (the first column) the 
filter peaks are not quite as centered around 0 as they were for the DDMA data. This is because 
the filter is correcting for the fact that although we are treating the TDMA data as having been 
transmitted simultaneously, they were in fact transmitted on separated pulses. 

5.2    SIMO EQUALIZATION 

The same equalization strategy is employed to process the SIMO data, however, it is of 
course only applied to the receiver channels. Note that the adaptive equalization procedure has 
more freedom to correct errors after the fact for the MIMO system than the SIMO system since the 
MIMO system enables phase corrections across both the transmit and receive modules after the 
data collection. In contrast, for the SIMO system it is only possible to correct for phase differences 
or channel imbalance across the receive modules after the data has been collected. Thus the MIMO 
system allows more flexibility for calibration and is more robust to hardware errors. In general 
we noticed that the DDMA SIMO data was easier to calibrate than the conventional SIMO data. 
This can be seen in the pulse domain filter coefficients for the two types of SIMO data shown in 
Figure 19. Here each column is the CPI corresponding to a distinct scan angle, and each row is 
a different receiver. We are not certain why the conventional SIMO data is harder to calibrate. 
We speculate that it is due to the fact that the MIMO and the DDMA SIMO CPIs, having longer 
integration times, resolve the clutter with higher resolution than the conventional SIMO data. Since 
our calibration approach is calibrating to the clutter, it seems plausible that the the procedure would 
work better on data with longer integration times. Regardless, as we will show in the subsequent 
sections, the performance of the conventional SIMO data is quite poor in comparison to the DDMA 
SIMO data. 
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Figure 14- Pulse domain equalization filter coefficient magnitudes. Each row is a different receiver, each 
column is a different transmitter. The x-axis indicates pulses. 

5.3     STAP 

After equalization, the range-pulse-channel data cube is processed with PRI-staggered STAP 
[14]. Since we have shifted our data to align the clutter response across channels, in the STAP 
processing we must use steering vectors which have been transformed in the same fashion. The 
full space time steering vectors for a target with normalized Doppler UJI and normalized spatial 
frequency t')t is 

v„m(wt,#t) = e      2iriutm » V 2vTPRl I . 

Let Np be the number of pulses. For each channel we take A contiguous subsets of length X,, — A" 
and Doppler filter them. Thus for each Doppler bin we have a vector of length NK, where N is 
the number of array elements (virtual array elements in the MIMO case). These staggered Doppler 
filters are applied to the full space time steering vectors to obtain steering vectors for the PRJ- 
staggered STAP processing. We also apply the same staggered Doppler filters to the data. So for 
each range-Doppler bin of the data we have a vector of length NK. 

The STAP filters require an estimate of the clutter covariance matrix. The process i >1 estimat- 
ing this matrix is called training. Let us now describe our training strategy. For a fixed Doppler bin. 
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let A denote nrange x N matrix (where nrange is the number of range samples we have processed), 
whose columns have the data from the array channels in that Doppler bin for all the ranges. Here 
for selecting training data we use a single Doppler filter, hence there are only N and not NK 
degrees of freedom. We perform a singular value decomposition and write 

A = USVW. 

The eigenvectors of the sample virtual array covariance are the columns of V. The eigenvector cor- 
responding to the largest eigenvalue should be the clutter response which should be approximately 
[I 1]T. Let 

w = us. 
The components of each row of W express the contribution of each eigenvector (column of V) to 
the expansion of that range-Doppler cell in the basis of eigenvectors. Let T be the length nrange 

vector with 

rp    _ Z-*m=2 I vv 
N 

"' nm I 

"      v"     IW     I2' 

The n component of T is the ratio of the contribution to the data in the nth range-Doppler cell 
of the subdominant eigenvectors alone versus the clutter and subdominant eigenvectors. We take 
range bins with smaller values of Tn to use as training samples with the expectation that these 
have strong sources of clutter. This is essentially a type of phase selective training [15]. 

We use the selected range bins to compute a sample covariance matrix of the PRI staggered 
Doppler filtered data for that Doppler bin (note this covariance matrix will be TIRTITK X URTITK 

where K is the number of stagger). When we compute the STAP weights, we iterate through the 
range bins that we are processing and if the range bin under consideration or any range bins slightly 
above or below that range bin were used as a sample for the covariance matrix, we perform a low 
rank update to remove its contribution to the covariance matrix4. We compute the 7bth percentile 
of the distribution of power across all range bins at that Doppler. For range bins whose power is 
greater than this level, we do not fully remove the contribution to the sample covariance matrix. 
but leave a contribution to the the sample covariance matrix proportional to the power of the cell. 
This helps desensitize the STAP processor to clutter discretes. This technique is known as power 
selective de-emphasis [16]. For the MIMO data we use K = 4 staggers, for the SIMO data we use 
K — 16, this give the MIMO and SIMO the same number of adaptive degrees of freedom (though 
the MIMO has more spatial degrees of freedom). 

We apply noise loading for further robustness. To estimate the noise covariance. we sample 
noise only data using range bins early in the PRI before any signal has been returned by the ground. 
The same filters used to equalize the data are applied to the noise and the filtered noise covariance 
is used to load the clutter covariance when we compute the STAP weights. 

4 We do this using the Sherman-Morrison-Woodbury formula, 

(R+YXZ)"1 = R-1- R^'Y(X_1 + Z
H
R-

1
Y)"

1
Z"R"

1
. 
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(a) Range domain filter coefficient magnitudes for a single pulse. 
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(b) Second range domain filter coefficient magnitudes using all pulses. 

Figure 15. Range domain equalization filter coefficient magnitudes. The x-axis is fast timt samples. 
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Figure 16. Two dimensional filter coefficient magnitudes. The x axis is Doppler bins and the y axis is range. 
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Figure 17. Fast-time frequency domain filter coefficient magrxitudes. 
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Figure 18. TDM A pulse domain filter coefficient magnitudes. 
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(a) Pulse domain filter coefficient magnitudes for DDMA SIMO data. 
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(b) Pulse domain filter coefficient magnitudes for conventional SIMO data. 

Figure 19. Pulse domain filter coefficient magnitudes for two types of SIMO data. 
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6.     EXPERIMENTAL RESULTS 

Figures 20. 21. and 22 show a region of a range-Doppler map for a single dwell of DDMA S1MO 
data (dense receive array). DDMA MIMO data (sparse receive array), and conventional SI MO data 
(dense receive array) respectively, after PRI-staggered STAP. In the DDMA SIMO case, a dwell 
consists of the four interleaved CPIs covering four distinct scan angles, while for the MIMO system 
a dwell is a single CPI covering the same total scan area. For the conventional SIMO data, a 
dwell is a sequence of non-interleaved consecutive CPIs covering four distinct scan angles. In order 
to concisely display detections across the entire test area, in Figures 20. 21, and 22 we show the 
maximum over the AMF normalized STAP outputs for a collection of receive beams covering the 
test site. In the plots of the SIMO data, to combine the multiple scan angles, we take the maximum 
over the post-STAP data from all four scan angles as well as over the collection of receive beams. 
The labels VI,..., V4 indicate the GPS-derived locations of the instrumented vehicles from the 
experiment and the white rectangles indicate detections after a local CFAR normalization is applied 
(not pictured) with a detection threshold level of 10 dB. 

The number of PRI staggers for the STAP algorithm, K = 16 staggers for SIMO and K = 4 
staggers for MIMO. were chosen to achieve the same number of adaptive degrees of freedom for 
both processing approaches. In this example, the MIMO system clearly detects three of the four 
vehicles in the experiment while the DDMA SIMO system only detects one of the four vehicles. 
The conventional SIMO system does not satisfy the detection criteria for any vehicles, although 
vehicle 1 can be seen to be visible somewhat above the clutter. 

5000 
-21 -100 0 100 

Doppler (Hz) 

Figure 20. DDMA SIMO detection results for four instrumented vehicles after adapt in  processing of a 
single dwell. 
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Figure 21. DDMA MIMO detections for four instrumented vehicles after adaptive 
processing in a single dwell. 
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Figure 22. Conventional SIMO post STAP. No targets satisfy the detection criteria. 

Because the plots in Figures 20, 21, and 22 combine multiple receive beams (which are not 
all pointed broadside), the target Dopplers do not show how close to the clutter the targets are. In 
Figures 23 and 24, we display the MVDR normalized output for one receive beam pointed at VI 
and V3. We have set the clutter at that angle to correspond to 0 m/s. In these plots, it can clearly 
be seen that the high velocity of VI ensures it is far from the clutter notch and thus detectable by 
both systems, while the wider clutter ridge for the SIMO configuration obscures the slower V3. 
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Figure 23. DDMA MIMO MVDR beamformer output at om anglt 
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Figure 24- DDMA SIMO MVDR beamformer output at ont angU 

The test site was surrounded by trees, so some of the vehicles may be shadowed at times. 
However, recall that for this DDMA MIMO vs DDMA SIMO comparison, the data was co-collected 
(in fact, the same dwell of data is used for both DDMA SIMO and DDMA MIMO - they differ 
only in the receive channels and data processing techniques used), so that any shadowing in the 
dwell affects the DDMA SIMO and DDMA MIMO cases equally. The conventional SIMO data was 
interleaved and the dwell depicted in Figure 22 occurs 0.1 seconds after the dwells processed for 
the DDMA MIMO and DDMA SIMO cases. Therefore, this example demonstrates a substantial 
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improvement in detectability for vehicles V3 and V4 using the MIMO techniques. In Figure 25(b) 
we plot the SINR of the slowest vehicle, V3, as a function of time for the DDMA MIMO and DDMA 
SIMO systems. This illustrates the uniform improvement in SINR for slow moving targets using 
the MIMO approach. In Figure 25(a) we plot the velocities of all the vehicles over the course of 
the run. Figures 20, 21. 22, 23. and 24 correspond to t ~ 0.2 seconds. Note that VI was traveling 
much faster than the other vehicles explaining why it was detected by the SIMO systems. 
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(a) Target radial velocities over time (does not include platform motion) 
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(b) Vehicle 3 SINR over time. 

Figure 25. Target SINR (for vehicle 3) and radial velocity (all targets) over time. 

Some of the recorded data involved four dismount targets. Two of the dismounts were carrying 
a large corner reflector. Although the unaugmented dismounts were not visible, the dismounts 
carrying the corner reflector (D2 and D3) provide a target with a comparable RCS to the vehicles, 
but moving much slower. In Figures 26(a) and 26(b) we plot post-STAP MVDR beamformer outputs 
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of the area around the dismounts. The MIMO system can distinguish the moving corner reflector 
from the clutter while the DDMA SIMO system cannot. In Figures 27(a) and 27(b) we plot the 
GPS derived velocity of the dismounts carrying the reflector, and the out put SINR vs time. 
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(a) MIMO dismount detections. 
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(b) SIMO dismount detections. 

Figure 26. MVDH beamformer output showing dismounts D2 and D3 who were carrying a large conn r 
reflector between them are clearly visible to the MIMO system but not the SIMO system. 

6.1     MEASURED SINR LOSS 

The expected MDV of the two architectures can be compared by looking at the signal-to- 
interference-plus-noise ratio (SINR) loss versus radial velocity. First recall that 

SINR = 
|wwx|2 

wffRi+„w' 

where w are the adaptive weights, x is a synthetic target, and R, f „ is the interference-plus-noise 
covariance matrix. The SINR. loss is the ratio of the observed SINR to the SNR in the noise-only 
case. To calculate the SINR loss from the measured data, the adapted weights w and covariance 
Rj+Tl are estimated from a single CPI of data over a set of radial velocities. To estimate the 
noise-only covariance matrix, we use noise-only range bins recorded before any ground returns are 
received and apply the previously computed adaptive equalization Biters. 

In [8] theoretical bounds on achievable SINR loss for MIMO and SIMO systems were derived. 
The model used to compute these bounds assumes rank 1 clutter in each Doppler bin. infinite CNR. 
exact knowledge of the covariance matrix, and no internal clutter motion or mutual coupling. The 
bounds are only valid in a neighborhood of the clutter notch. 
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(a) Radial Velocity of dismounts carrying the corner reflector (does not include 
platform motion). 
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(b) Moving corner reflector SINR as a function of time. 

Figure 21. Target SINR for corner reflector and radial velocity for dismounts carrying reflector. 

In Figure 28. the solid lines show the estimated SINR loss for the experimental MIMO and 
SIMO systems at an azimuthal angle of 0 degrees as a function of target radial velocity. The 
dashed lines indicate the theoretical bound on SINR loss for the MIMO and SIMO systems as 
derived in [8]. Observe that the MIMO system clearly has a much narrower notch and avoids 
the blind velocities that would be typical of a sparse aperture with conventional processing. This 
performance demonstrates the advantage of the large filled virtual aperture. Also observe that while 
the experimental curves do not quite meet the bounds, the overall improvement of our MIMO 
system over our SIMO system is in line with the improvement that one would expect based on 
the theoretical curves. Note that although the TDMA waveforms have very good performance, the 
DDMA waveforms appear to perform slightly better. However, we should point out the TDMA data 
was not interleaved and was collected on a different run which could be the source of the performance 
difference (for example, possibly due to more severe crab). Also note that the conventional SIMO 
data has poorer performance than the DDMA SIMO data. The difference in the performance of 
the two types of SIMO data is likely due to calibration difficulties noted in Section 5.2. We present 
some addition discussion of these performance differences in Section 7. 
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Figure 28. SIMO arid MIMO experimental and theoretical SINH Loss curves at azimuthal angle 0. Here the 
SIMO curve is the conventional (non DDMA) SIMO data. 

6.2     RECEIVER OPERATING CHARACTERISTIC CURVES 

In Figure 31. we show ROC curves for the DDMA MIMO and DDMA SIMO data. This was 
computed using data from a run consisting of 45 sequential CPIs over the course of 10 seconds. Note 
that although the absolute performance is low. the MIMO systems exhibits an order of magnitude 
improvement in performance at Pp = 0.5. The curve does not take into acount shadowing by trees 
surrounding the site which we expect meant that at on average only two or at most three vehicles 
would be unobscured at any given time. To illustrate this. Figure 29 depicts the paths of the vehicles 
during the experiment. Figure 30 is a frame of video showing a vehicle, that is in the same position 
as vehicle 4 in Figure 29. driving near the tree line. The two sources of shadowing that were most 
problematic were the trees at the bottom of the circular path, and the trees lining the road that 
vehicle 1 was driving along. Given this shadowing, the MIMO performance for our low cost tcstbed 
is quite good. 

6.3     ANGLE ESTIMATION ACCURACY 

In this section, we consider the angle estimation performance of the large sparse MIMO array 
in comparison to the smaller SIMO array. Let v(6) and w(0) denote the adapted weight and steering 
vectors as a function of angle in a given Doppler bin (recall we are using a PRI-staggered STAP 
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Figure 29. Test site and vehicle paths. 

Figure 30. Vehicle driving near tree line. 
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Figure 31. ROC curves for DDMA SIMO and DDMA MIMO data. 

algorithm). Assume that w(#) is AMF normalized, i.e., 

wOT.      n-vW     . 

Suppose our data vector xo, is distributed as 

xo = av(90) + n 

with n a multivariate complex Gaussian with covariance 

E[nnH] = R. 

Then the estimator 

9 = arg max |w(6>)//x0|'
2 = argmax H (20) 

0 e       v(f?)wR   lv(0) 

is the maximum likelihood estimate of the target direction 9Q. Consider the function 

*(0) = |w(0)"v(0o)|
2. 

We call this the array ambiguity function. It is what the function being maximized in (20) tends 
to at high SINR5. 

Note that, this is not the adapted beam pattern, which is 

b{6) = w(0o)   v(0). 
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(a) MIMO array ambiguity function. 
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(b) SIMO array ambiguity function. 
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Figure 32. Slice of SIMO and MIMO array ambiguity junction steered to -1 degrees. 

In Figure 32. we plot the array ambiguity function in a single Doppler bin (corresponding 
to the response to a target at —1 degrees with a velocity of 7 m/s). We use the same covariance 
estimate that was used in the STAP processing. Note that the MIMO system has a much narrower 
peak as expected, which will yield improved angle estimation performance. For comparison, the 
(nonadaptive) MIMO virtual array should have a peak-to-null beamwidth of 2.38 degrees while the 
nonadaptive SIMO array should have a peak-to-null beamwidth of 9.58 degrees. Also for comparison, 
in Figure 33 we plot the array ambiguity function in the case there is no adaptation (i.e., when 
R = I). 

Although the ground vehicles were instrumented, direct assessment of the angle estimation 
performance is difficult due to several factors. First, our radar data samples in the testbed are not 
synchronized to the plane's navigation data, so we had to estimate the time alignment. We did 
this by first generating a crude SAR image from the radar data and then mapping a USGS map 
of the test site into range-Doppler space, based on an initial guess of the time offset. We varied 
this guess until the two images matched. This process was done by eye and so we are unlikely to 
have much better than about 1 second alignment between the GPS and radar data. While this 
coarse alignment was fine for matching detections with the instrumented targets, it is not sufficient 
for measuring the angle estimation performance. Furthermore, the IMU unit in the aircraft was 
aligned with the array axis by hand, so a few degrees misalignment is likely. This leaves us some 
doubts about the accuracy of the measured crab. These uncertainties make comparison of the angle 
estimates for detected targets with the navigation data difficult. 

i.e., in the beam pattern we compute a fixed weight and vary the input signal. For the array ambiguity function 
we fix the signal and vary the weight. 
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(a) MIMO unadapted array ambiguity function. 
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(b) SIMO unadapted array ambiguity function. 
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Figure 33. Slice of SIMO and MIMO unadapted array ambiguity function six red to -1 degrees. 

Despite of these uncertainties, in Figure 34(a) we plot some rough estimates of the angle 
estimation error for one vehicle (VI) over a two second period and in 34(b) we plot the SINR of 
this vehicle. In Figure 35. we do the same for the SIMO case. This target and time period were 
chosen because both the MIMO and SIMO processing techniques detected the vehicle during this 
period. The MIMO system clearly gives much more consistent estimates. 

An interesting and obvious feature of both the MIMO and SIMO case is they seem to be 
biased somewhat negatively, the SIMO more-so than the MIMO. There are at least four sources 
possibly contributing to this bias. First, the measured crab over the course of the run is between 
1.8 and 2.1 degrees. This has not been taken into account in our angle estimation, however, we 
also are not certain that this measured crab is correct. Secondly, inaccuracy in how our radar data 
is time aligned with the navigation data will contribute a source of error to the angle estimation. 
In Figure 36, we plot the MIMO array response (in a single Doppler bin) to a synthetic target at 
— 1 degrees (indicated by the black line) but now with a velocity of around 1.2 in/s which is much 
closer to the clutter than the synthetic targets in Figures 32(a) and 32(b). The actual peak of this 
slice is indicated by the red line which is 0.63 degrees to the left of where the beam is steered. 
This can be a source of bias. The same thing happens in the SIMO case when the target is near 
the clutter. Similarly, calibration errors which we know are present will introduce steering vector 
mismatch which will produce additional sources of errors. 

These sources of error are certainly all present to some degree and unfortunately due to the 
limitations of our testbed and experimental setup, we cannot estimate them well enough to give a 
precise measure of the performance improvement of the MIMO system. The plots shown, however, 
qualitatively indicate the MIMO system's improved angle estimation capability. 
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(a) MIMO angle estimation error for vehicle 1. 

(b) MIMO SINR for vehicle 1. 

Figure 34- MIMO angle estimation error and SINR for vehicle 1 during two second period. 
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(a) SIMO angle estimation error for vehicle I. 
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(b) SIMO SINK for vehicle 1. 

Figure 35. SIMO angle estimation error and SINR during two second period. 
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Figure 36. Slice of MIMO array ambiguity function steered to -1 degrees (black line). Actual peak is the 
red line. 
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7.     MIMO AND SIMO COMPARISON ISSUES 

There are many differing opinions of what a fair "apples" to "apples" comparison is for a 
MIMO versus SIMO GMTI radar system. In this section, we make some observations about the 
differences in experimental performance of the MIMO and SIMO systems. We also make some 
general observations about the evaluation of the applicability of MIMO techniques to a given task. 

In Section 6.1, we compared our experimental SINR loss to some theoretical optimum SINR 
loss curves of [8]. It will be useful in our subsequent discussion to examine the expressions for these 
curves more explicitly. Assume that our transmit and receive arrays are linear and our coordinates 
are chosen so they lie on the x-axis in R3. Let xj1 (i = 1 n/j) and xj (j = 1 ny ) be the 
^-coordinates of the transmitter and receiver phase center locations and assume 

n R   nr 

££*.*+*J = o> 

where riff, TIT 
are the number of receivers, transmitters. This simply means we choose our coordi- 

nates so that the virtual array is centered about 0. Define 

1=1 j=\ 

Let T be the set of times at which each pulse is transmitted. Assume 

and define 

64     V-   2.f 

tt?T 

where njj is the number of pulses and vp is the platform velocity vector. Note that .4 is the mean 
squared virtual aperture size and p is the mean square synthetic aperture si/e (i.e., the aperture 
formed by the set of the different transmit locations). 

For a given target velocity \t and unit direction vector u. under certain assumptions (made 
explicit in [8]) one can show that the following approximation holds 

v,   u % - arcsin \/SINRloss||vp|| v/-4   ' + p"1. (21) 
7T 

SINR loss curves can be constructed by using this relationship to solve for the targel Doppler for 
a given set of SINR loss values. The relationship in (21) thus expresses the SINR loss as a function 
of both the virtual (spatial) and synthetic (temporal) apertures. 

The values of A and p for the configurations used in the experiment are shown in Table 3. 
Although the additional integration time of the DDMA SIMO does increase its /> value, it can be 
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seen that the system is primarily aperture limited, so longer integration would not be expected to 
produce much of an improvement in SINR loss performance. This can be seen visually by looking 
at the theoretical SINR loss plots for the DDMA SIMO and Conventional SIMO shown in Figure 
37. They can be seen to be essentially identical. 
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Figure 37. Conventional and DDMA SIMO theoretical SINR loss. 

TABLE 3 
A and p for Different Array Configurations 

A P 
DDMA and TDMA MIMO 769.:; 19048.569 
DDMA SIMO 15.12 19048.569 

Conventional SIMO 45.12 1190.54 

Consider again the SINR loss plot from Figure 28. It is natural to wonder about the variation 
in performance of the MIMO and SIMO systems. It appears that the DDMA MIMO slightly 
outperforms the TDMA MIMO. However, note that the TDMA data was not interleaved with 
the DDMA data and in fact was recorded on a completely different pass with different aircraft 
conditions (crab, etc.). which are probably responsible for the difference in performance. Next note 
that the conventional SIMO is not quite as good as the DDMA SIMO. As we have just discussed, the 
increased integration time of the DDMA SIMO cannot be responsible for its enhanced performance. 
We suspect these differences are likely due to calibration issues. 

Another possible source of SINR loss degradation is range ambiguities. The system's maximum 
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unambiguous range was approximately 22 km. Looking at the data, it seems that the returns had 
reached the noise floor by that point. However, it is possible that there is an elevation sidelobe 
contributing some range ambiguities to the near in range bins that is not directly visible 

Although all processing methods would be experiencing range ambiguities, we expect DDMA 
MIMO and DDMA SIMO to be affected much less by range ambiguities. This is because the 
variation from pulse to pulse in the transmitted signal effectively codes range ambiguous targets 
differently than unambiguous ones. For the DDMA MIMO processing, this effectively forces range- 
ambiguous targets off the array manifold. For the DDMA SIMO. the interleaved CPI structure 
means that range ambiguous returns will generally be coming from a different angle than the 
direction the beam is steered to on the subsequent pulse. 

Let us also consider the detection performance of the conventional SIMO data in comparison 
to the DDMA SIMO data. The conventional scanning approach requires a shorter CPI. so the 
Doppler resolution is reduced by a factor of rip; however, the unambiguous Doppler space is nx 
times wider, allowing for a greater range of unambiguous velocities. From a detection perspective, 
the reduced Doppler resolution increases the clutter-to-noise ratio in a range-Doppler cell which 
can degrade detection performance. The combination of increased clutter-to-noise ratio combined 
with the previously noted sub-par SINR loss performance, results in the poor performance for the 
conventional SIMO system indicated in Figure 22. 

The TDMA data was not interleaved with the DDMA MIMO data so we cannot directly 
compare the detection performance, however, it seemed to have similar detection capability to the 
DDMA MIMO system. Due to the different vehicle positions and shadowing effects, it is difficult 
to make a more precise statement. Note that the TDMA waveforms have 6 dH less SNR than the 
DDMA waveforms (however, the CNR is also reduced by 6 dB). 

Next, recall that the SIMO examples shown up to this point were configured with a dense 
transmit and dense receive array and the MIMO examples were configured with a dense transmit 
and sparse receive array. For SIMO. dense arrays are critical for avoiding adverse effects of grating 
lobes, in particular blind speeds and angle ambiguities. However, the dense array restricts the 
aperture size of the SIMO system in comparison to the MIMO system. It is true that the larger 
sparse aperture used by the MIMO system is the driving factor behind its superior performance. If 
one is willing to deal with blind speeds and angle ambiguities, then one could use a sparse array in 
a conventional SIMO system to achieve nearly the same angle resolution and MDV as the MIMO 
system. On the other hand, if the physical size of the radar is strictly constrained (as it may be for 
a pod-based radar), then one may also want to consider a MIMO system using only the densely 
packed array aperture. We compare the SINR loss curves for all four of these configurations in 
Figure 38. 

As seen in Figure 38. the sparse SIMO system achieves the same narrow clutter notch as the 
sparse MIMO system at the expense of multiple blind speeds. Due to the narrow clutter notch, 
the sparse SIMO system has comparable detection performance to the sparse MIMO system for 
the targets in our test area because they are all slow moving (2-6 m/s). Although we did not have 
experimental targets moving fast enough to demonstrate this, it is clear from Figure 38, i hat targets 
traveling with a radial velocity around ±12 m/s (and at an angle of 0 relative to broadside) would 
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be invisible to the SIMO system in this configuration due to the grating lobes. 

Blind velocities could be mitigated by collecting data with multiple PRFs. In this manner, 
one could conceivably construct a sparse SIMO system and use PRF agility to reduce blind speeds 
and angle ambiguities at the expense of longer dwell times. 

Next, compare the dense SIMO to the dense MIMO configuration. Both the transmit and 
receive arrays are dense so there are no blind speeds. However, the dense MIMO virtual array is 
nearly twice the length of the dense SIMO receive array which does afford a noticeable improvement 
in SINR loss for slow movers. Note that due to the redundant phase centers, the dense MIMO 
effectively has a triangular taper applied to it that will widen its notch somewhat (while providing 
lower sidelobes). By weighting the elements appropriately this taper could be removed which would 
narrow its notch a bit further. 

Velocity (m/s) 

Figure 38. SINR loss curves for different array configurations at azimuthal angle 0. 

Lastly, we should point out that the relationship between the DDMA MIMO waveforms and 
the interleaved SIMO operation, which held in this example collection, need not hold in general. 
The DDMA waveforms could be applied to an irregularly spaced transmit array or the waveform 
order over the transmit modules could be permuted and the result would not correspond to a 
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standard SIMO configuration. 

7.1     RECOMMENDED MIMO SCENARIOS 

Having compared different options for MIMO vs SIMO, a natural question to ask is when 
to use MIMO. Many articles and reports concerning MIMO seem to give the impression that 
MIMO is always better. One might be led to conclude that a MIMO radar is always better than a 
conventional radar. This of course is too simplistic. It is important to note that there is one curve 
that would be useful to have in Figure 38, which we do not have data for. That would be the SINR 
loss performance for a large filled conventional SIMO array with 16 receive phase centers at the 
same locations as the virtual array phase centers of the sparse MIMO configuration. Although we 
don't have actual data for it, it should perform at least as good as the sparse MIMO. In fact, we 
expect that a MIMO system will inevitably incur a couple dB of processing loss that a conventional 
array would not, so the large filled conventional array would probably outperform the sparse MIMO 
system. The large conventional array could also be operated at a lower PRF as we have mentioned. 
The main disadvantage of the conventional array is that it is larger, heavier, and requires more 
receiver and transmitter components. 

To assess the applicability of MIMO to a given problem one first needs to consider if I lie 
platform and budget supports a physical array large enough to meet the radar performance re- 
quirements. If it does, then a conventional array of the appropriate size will perform at least as 
well, if not better than a MIMO system whose virtual array phase centers are al the same locations 
as the conventional systems physical phase centers. 

One the other hand, there will be situations where performance requirements lead one to an 
array that the platform physically cannot support. This is likely to be the ease with smaller UAV 
platforms, as well as with arrays operating at longer wavelengths. In this case. MIMO may let 
one synthesize a virtual array which can yield the desired performance, in a package which has an 
acceptable SWaP. Scenarios of this type where MIMO may be the only usable option capable of 
yielding the desired performance are likely the best fit for real-world MIMO systems. Note that the 
MIMO performance does not come without cost. A MIMO system in a worst cast- scenario requires 
rir more pulse compressions, n-r more Doppler filters, and STAP vising TIT more degrees of freedom. 
Luckily, silicon tends to be cheap and get cheaper. A more serious limitation is the fact that the 
best waveforms that we know of for MIMO systems require higher PRFs than conventional system. 
This limits them to closer in operation at higher grazing angles. Performance at long ranges and 
low grazing angles will be degraded by range ambiguities and eclipsing. This can be avoided to 
some extent by designing arrays with taller apertures to minimize or null elevation sidelobes. 

Fven if the platform supports a filled conventional array, it may be that a cheaper array 
yielding similar performance could be constructed using MIMO techniques to reduce the physical 
number of phase centers. A discussion of cost comparisons for MIMO and SIMO system can be 
found in [17]. 

Lastly, one possible application of MIMO is as a technique to improve the performance of 
existing systems. Here we are considering situations where existing assets not initially designed for 
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MIMO, might be operated in a MIMO fashion. In particular, multiple existing radars with smaller 
apertures could be combined using MIMO to synthesize a large virtual array. 
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8.     FUTURE WORK 

There are a few fronts on which we would like to see future work at Lincoln Laboratory on 
MIMO GMTI proceed. Overall the experiment validated our theoretical models and understanding 
of MIMO systems. This gives us good confidence in the collection of MIMO modeling tools we have 
developed, in particular our MIMO GMTI simulator. The simulator is quite general and allows us 
to explore and compare the performance of systems employing very general array geometries and 
waveforms. We have been doing simulation work to assess the expected performance of some initial 
concepts for incorporating MIMO radar into real-world systems. 

8.1     IMPROVED CALIBRATION METHODOLOGY 

An interesting and to our knowledge unexplored aspect of practical MIMO systems concerns 
the calibration procedure for MIMO radars. As we have mentioned, in contrast to conventional 
radars. MIMO systems allow for calibration of the transmitters after the data has been recorded. 
As described in Section 5. we developed an adaptive calibration approach using the ground clutter. 
We found the calibration stage was absolutely crucial for extracting any meaningful results from 
the data. 

We envision that a real-world MIMO system would have some facility to record the output 
of each transmitter and would then use this data stream in a calibration stage to correct for errors 
and mismatches between the transmitters. Experimental or simulation work alon» these lines may 
be useful. 

8.2     WAVEFORM DESIGN 

In spite of a relatively large body of research on MIMO radar, the central problem of finding 
good MIMO waveforms is still quite open. As we have shown the DDMA/TDMA waveforms yield 
good performance, however, one would hope there is a larger class of waveforms that can support 
good performance. As we have described in Section 2. there are signficant restrictions on GMT] 
MIMO waveforms to maintain low clutter rank thus this is not a simple problem. We believe further 
research to develop waveforms and processing tecniques for MIMO waveforms would be useful. 

8.3     POSSIBLE MODIFICATIONS TO  EXISTING  HARDWARE FOR FUTURE 
DATA COLLECTION 

Although the initial data collection was successful there were some limitations of the testbed 
and the test site that made some of the performance comparisons difficult. We have compiled a list 
of possible modifications to the existing testbed that it might be possible to implement at a low 
cost for a future data collection. The most important of these modfications would be increasing the 
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bandwidth from 10 Mhz to 20 MHz6, doubling the transmit power7 and adding time stamps to the 
receiver data to facilitate synchronization with the navigation data. 

3 The maxmum receiver bandwidth is 20 Mhz, and the maximum transmitter bandwidth is 30 Mhz. We were having 
some reliability issues with transmitters that the higher bandwidth seemed to exacerbate so to be safe the inital 
experiment was done using the 10 Mhz of bandwidth. 

7 We drove the power amplifiers at 25 W, but they have been tested by the manufacturer up to 50 W. 
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9.    SUMMARY AND CONCLUSION 

An airborne MIMO GMTI experiment has been conducted to demonstrate the potential for 
enhanced GMTI performance using MIMO techniques. In this report, we gave an overview of tin- 
theory of MIMO radars and documented the signal processing chain developed for our experimental 
data. We compared the experimental performance of the MIMO operation to the performance of 
the testbed operated in a conventional fashion. Overall, the MIMO system exhibited the expected 
performance gains predicted by theoretical analysis. 

In particular, qualitative analysis of the post-STAP range-Doppler images clearly showed the 
improved detection performance of the MIMO systems. ROC curves were generated quantitatively 
showing the overall improved detection performance of the MIMO approach. Analysis of the SINK 
loss curves based on experimental data shows that the measured losses are close to the theoretical 
bounds predicted in [8]. Analysis of the data indicates the improved angle estimation performance 
of the MIMO system over the SIMO system, however, limitations of the testbed made precise 
comparisons difficult. 

Throughout this report and in particular in Section 7. we tried to convey the subtlely involved 
in comparisons between MIMO and SIMO systems. We hope the reader did not leave with the 
impression that a MIMO system is always the right choice for optimal performance. Instead, our 
view is that MIMO is a powerful technique which in certain circumstances can yield performance 
difficult to achieve any other way. but which also has limitations which must be kept in mind. 
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LIST OF ABBREVIATIONS AND ACRONYMS 

Abbreviation Description 

MIMO 

SIMO 

GMTI 

MIA 

SINR 

DDMA 

TDMA 

MVDR 

AMF 

multiple-input multiple-output 

single-input multiple-output 

ground moving target indicator 

minimum detectable velocity 

signal-to-inference-plus-noise ratio 

Doppler-division multiple access 

time-division multiple access 

minimum variance distortionless response 

adaptive matched filter 
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